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STATIC CRACK RESISTANCE OF IRON-BASED SINTERED POWDER MATERIALS

UDC 539.55:620.1A. V. Fedotov

A boundary-value problem of static crack resistance of structurally heterogeneous sintered materi-
als is formulated within the framework of the structurally phenomenological approach. A numerical
algorithm for modeling the mechanical behavior of structurally heterogeneous cracked powder mate-
rials is proposed. Crack resistance of some structurally heterogeneous powder materials is estimated.
The anomalous character of the crack resistance revealed is studied with the use of fractography.
Theoretical findings are supported by results of mechanical cracking tests.

Introduction. Progress in science and engineering is closely related to the wide use of materials produced
in powder metallurgy [1–4]. Powder materials are used in structures operating under extreme loading conditions.
In some cases, a structure fails because of the presence and growth of cracks [5–6]. To ensure safety and operating
capacity of a cracked structure, it is necessary to know characteristics of fracture toughness of the material used [7].

In some cases, it is impossible to estimate the operating capacity of a structure; therefore, laboratory tests of
specimens made of the same material as the structure are performed. In view of limited potentialities of experimental
methods of investigating the crack resistance of structurally heterogeneous powder materials, the present work is
urgent.

1. Experimental Study. As a subject of investigation, we considered iron-based sintered powder mate-
rials. An iron powder (OS.Ch.6-2) or a multicomponent mixture (based on iron, carbon, chromium, nickel, and
molybdenum powders) was compacted in a closed mould at room temperature; the blanks were 90 × 16 × 16 mm
parallelepipeds. The powder was sintered at 1200◦C in protective atmosphere (hydrogen) within 2 h for iron and
4 h for PK100N4M and ZhGr1.5Kh2N materials. Depending on compaction pressure, the residual porosity of the
materials was 0.4–26.5% [8].

The specimens were produced from blanks shaped like parallelepipeds by mechanical treatment. Before
testing, the specimens were loaded as cantilevered beams to obtain a fatigue crack at the tip of a V-shaped notch.
Depending on the force applied to the specimens, the tests were performed on a 2055R-0.5 test machine with a
maximum load of 500 kg or an R-10 machine for static tests with a maximum load of 10,000 kg. The deformation
curves obtained were used to calculate the static crack resistance of functional powder materials.

To process experimental results, we use models of deformation and fracture mechanics of structurally het-
erogeneous macroisotropic materials and analyze the stress–strain state of a powder composite at the macroscopic
level. We formulate the linear boundary-value problem of deformation and fracture of a specimen with a concentra-
tor. The specimen occupies a two-dimensional domain D (Fig. 1) bounded by a closed contour whose configuration
changes as the crack grows under loading. The following equations are valid in the domain D:

σij,j = 0, εij = (ui,j + uj,i)/2, σij = Cijklεkl.

Here σij are the stress-tensor components, εij are the strain-tensor components, ui are the displacement-vector
components, and Cijkl is the elastic constant tensor. The boundary conditions have the form

σijnj = 0, ui

∣∣∣
A,B

= 0, u1

∣∣∣
C

= 0, u2

∣∣∣
C

= v. (1.1)

Perm’ State Technical University, Perm’ 614600. Translated from Prikladnaya Mekhanika i Tekhnicheskaya
Fizika, Vol. 42, No. 6, pp. 183–189, November–December, 2001. Original article submitted March 30, 2001; revision
submitted July 9, 2001.

1078 0021-8944/01/4206-1078 $25.00 c© 2001 Plenum Publishing Corporation



Fig. 1. Notched specimen.

Here v is the displacement (deflection) at the point C where the load is applied and nj are the components of the
outward normal to the surface. The first condition in (1.1) is satisfied everywhere on the boundary of the domain D
except for points A, B, and C.

The problem of an equilibrium crack is solved by the boundary-element method, which leads to the system
of governing equations

Ag = BG, (1.2)

where A and B are the matrices of the boundary-influence coefficients and g and G are the global vectors of
boundary displacements and forces with some components known. Once system (1.2) is solved, one can determine
stresses and displacements at the surface of the body and, hence, calculate the force vector at an arbitrary point of
the surface:

Fri = σnS.

Here σn is the normal stress on the body surface and S is the area of the site where the stress σn acts.
Initially, failure does not occur in the body and the length of the crack is equal to zero. Using the Clapeyron

theorem, we express the elastic energy of the body in terms of the boundary stresses and displacements, some com-
ponents of which are determined from the boundary conditions (1.1) and the remaining components are dependent
quantities determined from system (1.2):

W0 = 0.5
∫

(usσs + unσn) dS. (1.3)

Here us and un are the tangential and normal boundary displacements, respectively, and σs and σn are the shear
and normal boundary stresses, respectively.

In experiments, the elastic energy was determined by the formula

Wi = 0.5
∫

(u′sσ
′
s + u′nσ

′
n) dS, (1.4)

where u′s and u′n are the tangential and normal boundary displacements, respectively, and σ′s and σ′n are the shear
and normal boundary stresses, respectively.

Using the well-known relations of fracture mechanics, we express the crack resistance in terms of the intensity
of released energy as

G = −dW/dl ≈ ∆W/∆l, (1.5)

where ∆W = Wi −W0 and ∆l = li − l0, and calculate the stress intensity factor

KI =
√
GE/(1− µ2), (1.6)

where E and µ are the effective elastic constants of the powder material.
The experimental data were processed by the numerical algorithm proposed by Sokolkin et al. [9]. The

experimental values of the fracture toughness of sintered materials are listed in Table 1.
2. Fractography Analysis. Figure 2 shows the crack resistance versus the porosity of specimens from

a structurally heterogeneous powder material PK100N4M prepared by the method outlined in Sec. 1. The curve
is not monotonic in contrast to the monotonic dependences of strength and elasticity on porosity. The minimum
crack resistance of the PK100N4M, ZhGr1.5Kh2N, and OS.Ch.6-2 materials is obtained for porosity within 5–9%.
The dependences obtained by processing experimental data can be written in the general form χ = χ0(1 − Θ)m,
where χ is a certain characteristic of the porous material, χ0 is the same characteristic of the pore-free material,
Θ is the volume fraction of pores, and m is a coefficient which takes different values for different characteristics
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TABLE 1

Material

KI,cr, MPa ·m1/2

Experiment Calculation under the assumption
of macrohomogeneity

Calculation under the assumption
of heterogeneity

PK100N4M 73.9–100.5 81.6–108.8 —
ZhGr1.5Kh2N 68.5–85.2 74.9–92.8 —
OS.Ch.6-2 25.2–38.9 27.1–43.1 28.0–44.4

Fig. 2. Effect of porosity on the crack resistance of the PK100N4M powder material.

(for example, m = 3–6 for strength). The dependence of the crack resistance of structurally heterogeneous porous
materials on the volume fraction of pores has the form

KI,cr = a(1−Θ)K0
I,cr + bΘσ

√
ξ,

where a and b are constants, K0
I,cr is the critical stress-intensity factor, σ is the strength of the pore-free material,

and ξ is the average diameter of the pores.
To study the microstructure of a fracture surface, we performed a fractography analysis using an SCAN-

NEX IIc scanner and a computer for automatic digitization and recording of results. In fractography, it is important
to preserve the fracture surface. If the fracture surfaces are subjected to a mechanical or chemical action, the frac-
tography analysis gives unreliable results. Therefore, we examined the fracture surfaces of specimens immediately
after experiment. A careful fractography analysis was performed for the fracture surfaces of all specimens tested for
crack resistance, including those made of the ZhGr1.5Kh2N powder steel with a porosity of 1.6–15.1%, PK100N4M
powder steel with a porosity of 1.1–14.9%, and OS.Ch.6-2 powder material with a porosity of 0.4–26.5%.

Figure 3 shows the microstructure of the fracture surface of a specimen from the OS.Ch.6-2 powder material
with a porosity Θ ≈ 2%. Several zones can be distinguished in the structure of all the powder materials tested.
Fracture begins from the notch and propagates at an angle to the specimen axis (zone 1). It should be noted
that the size of this zone depends on the plastic properties of the material. The maximum size is observed for the
OS.Ch.6-2 material. Zone 2 lies in the plane normal to the specimen axis; it is a part of the detachment surface.
The lateral slopes (zone 3) and final-fracture region (zone 4) located at an angle of 45◦ to the specimen axis are
formed under the action of shear stresses.

The common feature of the microstructures of the tested specimens from the PK100N4M, ZhGr1.5Kh2N,
and OS.Ch.6-2 materials is that the fracture occurs by spalling regardless of their porosity. It is noteworthy that the
fracture surface of the specimens has a pit structure. The fraction of the fracture surface with a pit relief increases
in proportion to the porosity of the material.

A certain difference in the structure of zones shown in Fig. 3 is observed. In zones 1, 3, and 4, there are
parabolic pits typical of shear fracture, and there are strongly elongated pits on the surface of the lateral slopes
(zone 3). There are regions of smooth delamination, which are also typical features of the microrelief under shear
fracture. Zone 2 is characterized by parabolic pits of eccentric detachment and equiaxial pits of normal detachment.
It should be noted that, as the carbon content in specimens increases, the number of quasi-spalling regions increases
and their energy content decreases, which is pronounced for some tested specimens from the PK100N4M and
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Fig. 3. Microstructure of the fracture surface of a specimen from
the OS.Ch.6-2 powder material (Θ ≈ 2%).

ZhGr1.5Kh2N powder materials. In these specimens, elements of intergranular fracture are clearly seen. The
regions of brittle intergranular fracture observed are characteristic of specimens with Θ = 5–9%. Brittle fracture of
specimens with Θ < 5% occurs over the grains (Fig. 3), which is caused by redistribution of impurities in powder
materials with different porosities. For energy reasons, the impurity atoms tend to occupy the free surface of pores.
Upon compaction of the material sintered and collapse of the pores, they enter the metal matrix. Initially, the
impurity atoms are concentrated on intergrain boundaries. This increases the probability of brittle fracture over
the grain boundaries. Therefore, regions of brittle intergranular fracture are expected to appear on the fracture
surface. Further compaction of the material leads to a more uniform distribution of impurity atoms in the bulk
of grains. In this case, the grains themselves become brittle, and fracture of the material has a transcrystallite
character, which is supported by the results of fractography analysis (Fig. 3).

Fractography of the fracture surfaces of sintered powder specimens shows that the presence of flat pores
decreases the crack resistance. However, this effect is small, since flat pores are not always formed, depending on
the production technology of a material.

3. Numerical Modeling. To solve the problem of a crack propagating through a deformable body, one
has to determine the stress–strain state of the latter. To this end, we used the ANSYS software package. The
problem was solved by the finite-element method (the finite-element model included 6228 rectangular elements
and 7749 nodes). The crack front was modeled by singular elements. The stress–strain state at the moment of
fracture of a specimen from the PK100N4M material with the modulus of elasticity E = 200 GPa, Poisson’s ratio
µ = 0.27, and porosity Θ = 9.4% was calculated. The specimen was 90 mm long, 16 mm high, and 16 mm
thick; the distance between the supports was 75 mm; the V-shaped notch was 4 mm deep. Using the calculation
results, we determined the crack resistance of the powder material by formulas (1.5)–(1.8). The values of KI,cr for
the OS.Ch.6-2, ZhGr1.5Kh2N, and PK100N4M powder materials, obtained under the assumption of macroscopic
homogeneity, are listed in Table 1.

In the neighborhood of cracks, the medium was assumed to be homogeneous. To refine and develop the
theory of fracture, it is necessary to take into account the structure of the medium. As an example, we consider
the OS.Ch.6-2 material. The mathematical formulation of the problem comprises the closed system of equations

σij,j(r) = 0, σij(r) = fij(akl(r), εkl(r)), εij(r) = [ui,j(r) + uj,i(r)]/2 (3.1)

and the boundary conditions

ui(r)
∣∣∣
Γ

= u
(0)
i (r), (3.2)

where u(0)
i (r) is the displacement vector specified at the surface Γ.

It is required to find the stress field σ(r) satisfying the boundary-value problem (3.1) and the boundary
conditions of the first kind (3.2). The boundary conditions are specific for each specimen; they are calculated under
the assumption of macroscopic homogeneity of the material. The problem was solved by the finite-element method
using the ANSYS software package (16,000 finite elements and 18,491 nodes were used). The crack front was
modeled by singular elements. The normal and shear stresses were determined for a specimen with E = 160 GPa
and µ = 0.26.
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We now study the relation between microscopic and macroscopic stress fields for structurally heterogeneous
powder materials, using a widely accepted method based on averaging the smooth components of structural defor-
mation fields [10]. In accordance with this method, the equations of the structurally phenomenological model are
reduced to a system for averaged stresses, strains, and displacements, which are called macroscopic. Physically, one
can relate the structural deformation variables to the macroscopic variables by using the concept of an elementary
macrovolume [11, 12].

Using the algorithm proposed above, we calculated the macrocharacteristics of the material, in particular, the
macrostress fields, and determined the coefficient KI,cr of the OS.Ch.6-2 powder material by formulas (1.5)–(1.8).
The critical stress-intensity factors KI,cr listed in Table 1 were calculated with allowance for the inhomogeneous
structure of the material and, therefore, are rather accurate.

4. Discussion of Results. Table 1 summarizes experimental and theoretical values of KI,cr for the
OS.Ch.6-2, ZhGr1.5Kh2N, and PK100N4M powder materials. The calculation results agree well with experimental
data obtained by the method proposed above. The values of KI,cr calculated in the two- and three-dimensional
formulations for a homogeneous body differ by no more than 11.2%. A comparative analysis shows that the
solution of the two-dimensional problem agrees satisfactorily with the solution of the three-dimensional problem
with allowance for heterogeneity of the OS.Ch.6-2 material. The discrepancy in numerical results does not exceed
15.8%. It is obvious that the scatter in the results depends on structural heterogeneity of the material. For some
specimens, however, the discrepancy was smaller than 2.6%. This can be explained by the low porosity of these
specimens (0.4–2.8%). The solution of the three-dimensional problem shows that the maximum error in determining
the stress-intensity factor of the material is 4.6% for specimens with high porosity. Thus, the discrepancy between
the two- and three-dimensional solutions increases with the porosity of the material.

Conclusions. The method proposed allows determination of the static crack resistance of structurally
heterogeneous powder materials. Using this method, one can readily estimate KI,cr with a satisfactory accuracy in
simple and rapid tests.
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